Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomolecules ; 13(1)2023 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-36671538

RESUMEN

Inositol pyrophosphates (PP-InsPs); are a functionally diverse family of eukaryotic molecules that deploy a highly-specialized array of phosphate groups as a combinatorial cell-signaling code. One reductive strategy to derive a molecular-level understanding of the many actions of PP-InsPs is to individually characterize the proteins that bind them. Here, we describe an alternate approach that seeks a single, collective rationalization for PP-InsP binding to an entire group of proteins, i.e., the multiple nucleolar proteins previously reported to bind 5-InsP7 (5-diphospho-inositol-1,2,3,4,6-pentakisphosphate). Quantitative confocal imaging of the outer nucleolar granular region revealed its expansion when cellular 5-InsP7 levels were elevated by either (a) reducing the 5-InsP7 metabolism by a CRISPR-based knockout (KO) of either NUDT3 or PPIP5Ks; or (b), the heterologous expression of wild-type inositol hexakisphosphate kinase, i.e., IP6K2; separate expression of a kinase-dead IP6K2 mutant did not affect granular volume. Conversely, the nucleolar granular region in PPIP5K KO cells shrank back to the wild-type volume upon attenuating 5-InsP7 synthesis using either a pan-IP6K inhibitor or the siRNA-induced knockdown of IP6K1+IP6K2. Significantly, the inner fibrillar volume of the nucleolus was unaffected by 5-InsP7. We posit that 5-InsP7 acts as an 'electrostatic glue' that binds together positively charged surfaces on separate proteins, overcoming mutual protein-protein electrostatic repulsion the latter phenomenon is a known requirement for the assembly of a non-membranous biomolecular condensate.


Asunto(s)
Difosfatos , Inositol , Transducción de Señal , Fosforilación
2.
PNAS Nexus ; 1(4): pgac118, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36090660

RESUMEN

Rix7 is an essential AAA+ ATPase that functions during the early stages of ribosome biogenesis. Rix7 is composed of three domains including an N-terminal domain (NTD) and two AAA+ domains (D1 and D2) that assemble into an asymmetric stacked hexamer. It was recently established that Rix7 is a presumed protein translocase that removes substrates from preribosomes by translocating them through its central pore. However, how the different domains of Rix7 coordinate their activities within the overall hexameric structure was unknown. We captured cryo-electron microscopy (EM) structures of single and double Walker B variants of full length Rix7. The disordered NTD was not visible in the cryo-EM reconstructions, but cross-linking mass spectrometry revealed that the NTD can associate with the central channel in vitro. Deletion of the disordered NTD enabled us to obtain a structure of the Rix7 hexamer to 2.9 Å resolution, providing high resolution details of critical motifs involved in substrate translocation and interdomain communication. This structure coupled with cell-based assays established that the linker connecting the D1 and D2 domains as well as the pore loops lining the central channel are essential for formation of the large ribosomal subunit. Together, our work shows that Rix7 utilizes a complex communication network to drive ribosome biogenesis.

3.
J Vis Exp ; (172)2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34152326

RESUMEN

Polysome fractionation by sucrose density gradient centrifugation is a powerful tool that can be used to create ribosome profiles, identify specific mRNAs being translated by ribosomes, and analyze polysome associated factors. While automated gradient makers and gradient fractionation systems are commonly used with this technique, these systems are generally expensive and can be cost-prohibitive for laboratories that have limited resources or cannot justify the expense due to their infrequent or occasional need to perform this method for their research. Here, a protocol is presented to reproducibly generate polysome profiles using standard equipment available in most molecular biology laboratories without specialized fractionation instruments. Moreover, a comparison of polysome profiles generated with and without a gradient fractionation system is provided. Strategies to optimize and produce reproducible polysome profiles are discussed. Saccharomyces cerevisiae is utilized as a model organism in this protocol. However, this protocol can be easily modified and adapted to generate ribosome profiles for many different organisms and cell types.


Asunto(s)
Ribosomas , Saccharomyces cerevisiae , Fraccionamiento Celular , Centrifugación por Gradiente de Densidad , Biología Molecular , Polirribosomas/genética , Polirribosomas/metabolismo , Biosíntesis de Proteínas , ARN Mensajero/metabolismo , Ribosomas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
4.
Nat Commun ; 12(1): 636, 2021 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-33504779

RESUMEN

Nsp15, a uridine specific endoribonuclease conserved across coronaviruses, processes viral RNA to evade detection by host defense systems. Crystal structures of Nsp15 from different coronaviruses have shown a common hexameric assembly, yet how the enzyme recognizes and processes RNA remains poorly understood. Here we report a series of cryo-EM reconstructions of SARS-CoV-2 Nsp15, in both apo and UTP-bound states. The cryo-EM reconstructions, combined with biochemistry, mass spectrometry, and molecular dynamics, expose molecular details of how critical active site residues recognize uridine and facilitate catalysis of the phosphodiester bond. Mass spectrometry revealed the accumulation of cyclic phosphate cleavage products, while analysis of the apo and UTP-bound datasets revealed conformational dynamics not observed by crystal structures that are likely important to facilitate substrate recognition and regulate nuclease activity. Collectively, these findings advance understanding of how Nsp15 processes viral RNA and provide a structural framework for the development of new therapeutics.


Asunto(s)
Endorribonucleasas/química , Endorribonucleasas/ultraestructura , SARS-CoV-2/enzimología , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/ultraestructura , Secuencia de Aminoácidos , Dominio Catalítico , Microscopía por Crioelectrón , Endorribonucleasas/metabolismo , Modelos Químicos , Modelos Moleculares , SARS-CoV-2/química , Uridina Trifosfato/metabolismo , Proteínas no Estructurales Virales/metabolismo
5.
bioRxiv ; 2020 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-32803198

RESUMEN

New therapeutics are urgently needed to inhibit SARS-CoV-2, the virus responsible for the on-going Covid-19 pandemic. Nsp15, a uridine-specific endoribonuclease found in all coronaviruses, processes viral RNA to evade detection by RNA-activated host defense systems, making it a promising drug target. Previous work with SARS-CoV-1 established that Nsp15 is active as a hexamer, yet how Nsp15 recognizes and processes viral RNA remains unknown. Here we report a series of cryo-EM reconstructions of SARS-CoV-2 Nsp15. The UTP-bound cryo-EM reconstruction at 3.36 Å resolution provides molecular details into how critical residues within the Nsp15 active site recognize uridine and facilitate catalysis of the phosphodiester bond, whereas the apo-states reveal active site conformational heterogeneity. We further demonstrate the specificity and mechanism of nuclease activity by analyzing Nsp15 products using mass spectrometry. Collectively, these findings advance understanding of how Nsp15 processes viral RNA and provide a structural framework for the development of new therapeutics.

6.
Nat Struct Mol Biol ; 26(9): 830-839, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31488907

RESUMEN

Ribosome assembly is a complex process reliant on the coordination of trans-acting enzymes to produce functional ribosomal subunits and secure the translational capacity of cells. The endoribonuclease (RNase) Las1 and the polynucleotide kinase (PNK) Grc3 assemble into a multienzyme complex, herein designated RNase PNK, to orchestrate processing of precursor ribosomal RNA (rRNA). RNase PNK belongs to the functionally diverse HEPN nuclease superfamily, whose members rely on distinct cues for nuclease activation. To establish how RNase PNK coordinates its dual enzymatic activities, we solved a series of cryo-EM structures of Chaetomium thermophilum RNase PNK in multiple conformational states. The structures reveal that RNase PNK adopts a butterfly-like architecture, harboring a composite HEPN nuclease active site flanked by discrete RNA kinase sites. We identify two molecular switches that coordinate nuclease and kinase function. Together, our structures and corresponding functional studies establish a new mechanism of HEPN nuclease activation essential for ribosome production.


Asunto(s)
Dominio Catalítico , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/ultraestructura , Complejos Multienzimáticos/metabolismo , Complejos Multienzimáticos/ultraestructura , Precursores del ARN/metabolismo , Chaetomium/enzimología , Microscopía por Crioelectrón , Conformación Proteica
7.
Life Sci Alliance ; 2(1)2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30737248

RESUMEN

The impact of mitochondrial dysfunction in epigenetics is emerging, but our understanding of this relationship and its effect on gene expression remains incomplete. We previously showed that acute mitochondrial DNA (mtDNA) loss leads to histone hypoacetylation. It remains to be defined if these changes are maintained when mitochondrial dysfunction is chronic and if they alter gene expression. To fill these gaps of knowledge, we here studied a progressive and a chronic model of mtDNA depletion using biochemical, pharmacological, genomics, and genetic assays. We show that histones are primarily hypoacetylated in both models. We link these effects to decreased histone acetyltransferase activity unrelated to changes in ATP citrate lyase, acetyl coenzyme A synthetase 2, or pyruvate dehydrogenase activities, which can be reversibly modulated by altering the mitochondrial pool of acetyl-coenzyme A. Also, we determined that the accompanying changes in histone acetylation regulate locus-specific gene expression and physiological outcomes, including the production of prostaglandins. These results may be relevant to the pathophysiology of mtDNA depletion syndromes and to understanding the effects of environmental agents that lead to physical or functional mtDNA loss.


Asunto(s)
Acetilcoenzima A/metabolismo , Expresión Génica/genética , Sitios Genéticos/genética , Histonas/metabolismo , Mitocondrias/enzimología , Acetato CoA Ligasa/metabolismo , Acetilación , ADN Polimerasa gamma/metabolismo , ADN Mitocondrial/genética , Dinoprostona/metabolismo , Epigénesis Genética/genética , Expresión Génica/efectos de los fármacos , Células HEK293 , Histona Acetiltransferasas/metabolismo , Humanos , Ácidos Cetoglutáricos/farmacología , Regiones Promotoras Genéticas/genética
8.
Nat Commun ; 10(1): 513, 2019 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-30705282

RESUMEN

Rix7 is an essential type II AAA-ATPase required for the formation of the large ribosomal subunit. Rix7 has been proposed to utilize the power of ATP hydrolysis to drive the removal of assembly factors from pre-60S particles, but the mechanism of release is unknown. Rix7's mammalian homolog, NVL2 has been linked to cancer and mental illness disorders, highlighting the need to understand the molecular mechanisms of this essential machine. Here we report the cryo-EM reconstruction of the tandem AAA domains of Rix7 which form an asymmetric stacked homohexameric ring. We trapped Rix7 with a polypeptide in the central channel, revealing Rix7's role as a molecular unfoldase. The structure establishes that type II AAA-ATPases lacking the aromatic-hydrophobic motif within the first AAA domain can engage a substrate throughout the entire central channel. The structure also reveals that Rix7 contains unique post-α7 insertions within both AAA domains important for Rix7 function.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfatasas/ultraestructura , Microscopía por Crioelectrón/métodos , Proteínas Nucleares/metabolismo , Proteínas Nucleares/ultraestructura , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestructura , ATPasas Asociadas con Actividades Celulares Diversas/ultraestructura , ARN Ribosómico/metabolismo , ARN Ribosómico/ultraestructura , Proteínas Ribosómicas/metabolismo , Saccharomyces cerevisiae/metabolismo
9.
RNA ; 24(5): 721-738, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29440475

RESUMEN

Grc3 is an essential well-conserved eukaryotic polynucleotide kinase (PNK) that cooperates with the endoribonuclease Las1 to process the preribosomal RNA (rRNA). Aside from being dependent upon Las1 for coordinated kinase and nuclease function, little is known about Grc3 substrate specificity and the molecular mechanisms governing kinase activity. Here we characterize the kinase activity of Grc3 and identify key similarities and differences between Grc3 and other polynucleotide kinase family members. In contrast to other PNK family members, Grc3 has distinct substrate preference for RNA substrates in vitro. By disrupting conserved residues found at the Grc3 kinase active site, we identified specific residues required to support Grc3-directed Las1-mediated pre-rRNA cleavage in vitro and in vivo. The crosstalk between Grc3 and Las1 ensures the direct coupling of cleavage and phosphorylation during pre-rRNA processing. Taken together, our studies provide key insight into the polynucleotide kinase activity of the essential enzyme Grc3 and its molecular crosstalk with the endoribonuclease Las1.


Asunto(s)
Proteínas Nucleares/metabolismo , Polinucleótido 5'-Hidroxil-Quinasa/metabolismo , Precursores del ARN/metabolismo , ARN Ribosómico/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Secuencias de Aminoácidos , Biocatálisis , Oligonucleótidos/metabolismo , Fosforilación , Polinucleótido 5'-Hidroxil-Quinasa/química , Dominios Proteicos , ARN/metabolismo , Procesamiento Postranscripcional del ARN , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química
10.
J Biol Chem ; 293(1): 333-344, 2018 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-29133527

RESUMEN

The nuclear protein constitutive active/androstane receptor (CAR or NR1I3) regulates several liver functions such as drug and energy metabolism and cell growth or death, which are often involved in the development of diseases such as diabetes and hepatocellular carcinoma. CAR undergoes a conversion from inactive homodimers to active heterodimers with retinoid X receptor α (RXRα), and phosphorylation of the DNA-binding domain (DBD) at Thr-38 in CAR regulates this conversion. Here, we uncovered the molecular mechanism by which this phosphorylation regulates the intramolecular interaction between CAR's DBD and ligand-binding domain (LBD), enabling the homodimer-heterodimer conversion. Phosphomimetic substitution of Thr-38 with Asp increased co-immunoprecipitation of the CAR DBD with CAR LBD in Huh-7 cells. Isothermal titration calorimetry assays also revealed that recombinant CAR DBD-T38D, but not nonphosphorylated CAR DBD, bound the CAR LBD peptide. This DBD-LBD interaction masked CAR's dimer interface, preventing CAR homodimer formation. Of note, EGF signaling weakened the interaction of CAR DBD T38D with CAR LBD, converting CAR to the homodimer form. The DBD-T38D-LBD interaction also prevented CAR from forming a heterodimer with RXRα. However, this interaction opened up a CAR surface, allowing interaction with protein phosphatase 2A. Thr-38 dephosphorylation then dissociated the DBD-LBD interaction, allowing CAR heterodimer formation with RXRα. We conclude that the intramolecular interaction of phosphorylated DBD with the LBD enables CAR to adapt a transient monomer configuration that can be converted to either the inactive homodimer or the active heterodimer.


Asunto(s)
Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Línea Celular , Receptor de Androstano Constitutivo , Proteínas de Unión al ADN/metabolismo , Dimerización , Humanos , Ligandos , Fosforilación , Unión Proteica , Dominios Proteicos , Proteína Fosfatasa 2/metabolismo , Estructura Terciaria de Proteína , Receptor alfa X Retinoide/metabolismo , Receptores X Retinoide/metabolismo
11.
Proc Natl Acad Sci U S A ; 114(28): E5530-E5538, 2017 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-28652339

RESUMEN

Las1 is a recently discovered endoribonuclease that collaborates with Grc3-Rat1-Rai1 to process precursor ribosomal RNA (rRNA), yet its mechanism of action remains unknown. Disruption of the mammalian Las1 gene has been linked to congenital lethal motor neuron disease and X-linked intellectual disability disorders, thus highlighting the necessity to understand Las1 regulation and function. Here, we report that the essential Las1 endoribonuclease requires its binding partner, the polynucleotide kinase Grc3, for specific C2 cleavage. Our results establish that Grc3 drives Las1 endoribonuclease cleavage to its targeted C2 site both in vitro and in Saccharomyces cerevisiae. Moreover, we observed Las1-dependent activation of the Grc3 kinase activity exclusively toward single-stranded RNA. Together, Las1 and Grc3 assemble into a tetrameric complex that is required for competent rRNA processing. The tetrameric Grc3/Las1 cross talk draws unexpected parallels to endoribonucleases RNaseL and Ire1, and establishes Grc3/Las1 as a unique member of the RNaseL/Ire1 RNA splicing family. Together, our work provides mechanistic insight for the regulation of the Las1 endoribonuclease and identifies the tetrameric Grc3/Las1 complex as a unique example of a protein-guided programmable endoribonuclease.


Asunto(s)
Proteínas Nucleares/metabolismo , Polinucleótido 5'-Hidroxil-Quinasa/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Sitios de Unión , Escherichia coli/metabolismo , Proteínas Nucleares/genética , Fosforilación , Polinucleótido 5'-Hidroxil-Quinasa/genética , Dominios Proteicos , Multimerización de Proteína , Precursores del ARN/metabolismo , Procesamiento Postranscripcional del ARN , ARN Ribosómico/análisis , Proteínas Recombinantes/metabolismo , Ribosomas/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Técnicas del Sistema de Dos Híbridos
12.
Structure ; 25(5): 762-772.e4, 2017 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-28416111

RESUMEN

Ribosome assembly is a complex process that requires hundreds of essential assembly factors, including Rix7 (NVL2 in mammals) and Nsa1 (WDR74 in mammals). Rix7 is a type II double ring, AAA-ATPase, which is closely related to the well-known Cdc48/p97. Previous studies in Saccharomyces cerevisiae suggest that Rix7 mediates the release of Nsa1 from nucleolar pre-60S particles; however, the underlying mechanisms of this release are unknown. Through multiple structural analyses we show that S. cerevisiae Nsa1 is composed of an N-terminal seven-bladed WD40 domain followed by a lysine-rich C terminus that extends away from the WD40 domain and is required for nucleolar localization. Co-immunoprecipitation assays with the mammalian homologs identified a well-conserved interface within WDR74 that is important for its association with NVL2. We further show that WDR74 associates with the D1 AAA domain of NVL2, which represents a novel mode of binding of a substrate with a type II AAA-ATPase.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas/química , Adenosina Trifosfatasas/química , Proteínas Portadoras/química , Proteínas Nucleares/química , Proteínas Ribosómicas/química , Proteínas de Saccharomyces cerevisiae/química , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Adenosina Trifosfatasas/metabolismo , Secuencias de Aminoácidos , Animales , Proteínas Portadoras/metabolismo , Secuencia Conservada , Humanos , Proteínas Nucleares/metabolismo , Unión Proteica , Dominios Proteicos , Transporte de Proteínas , Proteínas de Unión al ARN , Proteínas Ribosómicas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
13.
J Biol Chem ; 291(2): 882-93, 2016 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-26601951

RESUMEN

The synthesis of eukaryotic ribosomes is a complex, energetically demanding process requiring the aid of numerous non-ribosomal factors, such as the PeBoW complex. The mammalian PeBoW complex, composed of Pes1, Bop1, and WDR12, is essential for the processing of the 32S preribosomal RNA. Previous work in Saccharomyces cerevisiae has shown that release of the homologous proteins in this complex (Nop7, Erb1, and Ytm1, respectively) from preribosomal particles requires Rea1 (midasin or MDN1 in humans), a large dynein-like protein. Midasin contains a C-terminal metal ion-dependent adhesion site (MIDAS) domain that interacts with the N-terminal ubiquitin-like (UBL) domain of Ytm1/WDR12 as well as the UBL domain of Rsa4/Nle1 in a later step in the ribosome maturation pathway. Here we present the crystal structure of the UBL domain of the WDR12 homologue from S. cerevisiae at 1.7 Å resolution and demonstrate that human midasin binds to WDR12 as well as Nle1 through their respective UBL domains. Midasin contains a well conserved extension region upstream of the MIDAS domain required for binding WDR12 and Nle1, and the interaction is dependent upon metal ion coordination because removal of the metal or mutation of residues that coordinate the metal ion diminishes the interaction. Mammalian WDR12 displays prominent nucleolar localization that is dependent upon active ribosomal RNA transcription. Based upon these results, we propose that release of the PeBoW complex and subsequent release of Nle1 by midasin is a well conserved step in the ribosome maturation pathway in both yeast and mammalian cells.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/metabolismo , Ribosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina/química , ATPasas Asociadas con Actividades Celulares Diversas , Adenosina Trifosfatasas/química , Secuencia de Aminoácidos , Proteínas de Ciclo Celular , Línea Celular , Nucléolo Celular/efectos de los fármacos , Nucléolo Celular/metabolismo , Cristalografía por Rayos X , Ácido Glutámico/metabolismo , Células HEK293 , Humanos , Iones , Metales/farmacología , Datos de Secuencia Molecular , Mutación/genética , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Unión Proteica/efectos de los fármacos , Estructura Terciaria de Proteína , ARN Polimerasa I/metabolismo , Proteínas de Unión al ARN , Ribosomas/efectos de los fármacos , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Homología de Secuencia de Aminoácido , Relación Estructura-Actividad
14.
Sci Rep ; 5: 13405, 2015 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-26304019

RESUMEN

We have characterized the nuclear localization signal (NLS) of XRCC1 structurally using X-ray crystallography and functionally using fluorescence imaging. Crystallography and binding studies confirm the bipartite nature of the XRCC1 NLS interaction with Importin α (Impα) in which the major and minor binding motifs are separated by >20 residues, and resolve previous inconsistent determinations. Binding studies of peptides corresponding to the bipartite NLS, as well as its major and minor binding motifs, to both wild-type and mutated forms of Impα reveal pronounced cooperative binding behavior that is generated by the proximity effect of the tethered major and minor motifs of the NLS. The cooperativity stems from the increased local concentration of the second motif near its cognate binding site that is a consequence of the stepwise binding behavior of the bipartite NLS. We predict that the stepwise dissociation of the NLS from Impα facilitates unloading by providing a partially complexed intermediate that is available for competitive binding by Nup50 or the Importin ß binding domain. This behavior provides a basis for meeting the intrinsically conflicting high affinity and high flux requirements of an efficient nuclear transport system.


Asunto(s)
Núcleo Celular/metabolismo , Reparación del ADN/fisiología , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Señales de Localización Nuclear/química , Señales de Localización Nuclear/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Humanos , Ratones , Simulación del Acoplamiento Molecular , Datos de Secuencia Molecular , Proteínas Asociadas a Matriz Nuclear/química , Proteínas Asociadas a Matriz Nuclear/metabolismo , Unión Proteica , Relación Estructura-Actividad , Distribución Tisular , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X , alfa Carioferinas/química , alfa Carioferinas/metabolismo
15.
Sci Signal ; 6(274): ra31, 2013 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-23652203

RESUMEN

Phenobarbital is a central nervous system depressant that also indirectly activates nuclear receptor constitutive active androstane receptor (CAR), which promotes drug and energy metabolism, as well as cell growth (and death), in the liver. We found that phenobarbital activated CAR by inhibiting epidermal growth factor receptor (EGFR) signaling. Phenobarbital bound to EGFR and potently inhibited the binding of EGF, which prevented the activation of EGFR. This abrogation of EGFR signaling induced the dephosphorylation of receptor for activated C kinase 1 (RACK1) at Tyr(52), which then promoted the dephosphorylation of CAR at Thr(38) by the catalytic core subunit of protein phosphatase 2A. The findings demonstrated that the phenobarbital-induced mechanism of CAR dephosphorylation and activation is mediated through its direct interaction with and inhibition of EGFR.


Asunto(s)
Receptores ErbB/metabolismo , Fenobarbital/farmacología , Receptores Citoplasmáticos y Nucleares/metabolismo , Transducción de Señal/efectos de los fármacos , Animales , Western Blotting , Línea Celular Tumoral , Células Cultivadas , Receptor de Androstano Constitutivo , Factor de Crecimiento Epidérmico/metabolismo , Factor de Crecimiento Epidérmico/farmacología , Receptores ErbB/química , Receptores ErbB/genética , Moduladores del GABA/metabolismo , Moduladores del GABA/farmacología , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C3H , Modelos Moleculares , Fenobarbital/metabolismo , Fosforilación/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Proteína Fosfatasa 2/genética , Proteína Fosfatasa 2/metabolismo , Estructura Terciaria de Proteína , Interferencia de ARN , Receptores de Cinasa C Activada , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Receptores Citoplasmáticos y Nucleares/genética
16.
J Biol Chem ; 287(51): 43030-41, 2012 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-23109337

RESUMEN

Orai1 is a plasma membrane protein that in its tetrameric form is responsible for calcium influx from the extracellular environment into the cytosol in response to interaction with the Ca(2+)-depletion sensor STIM1. This is followed by a fast Ca(2+)·calmodulin (CaM)-dependent inhibition, resulting from CaM binding to an Orai1 region called the calmodulin binding domain (CMBD). The interaction between Orai1 and CaM at the atomic level remains unknown. Here, we report the crystal structure of a CaM·Orai1-CMBD complex showing one CMBD bound to the C-terminal lobe of CaM, differing from other CaM-target protein complexes, in which both N- and C-terminal lobes of CaM (CaM-N and CaM-C) are involved in target binding. Orai1-CMBD binds CaM-C mainly through hydrophobic interactions, primarily involving residue Trp(76) of Orai1-CMBD, which interacts with the hydrophobic pocket of CaM-C. However, NMR data, isothermal titration calorimetry data, and pulldown assays indicated that CaM-N and CaM-C both can bind Orai1-CMBD, with CaM-N having ∼4 times weaker affinity than CaM-C. Pulldown assays of a Orai1-CMBD(W76E) mutant, gel filtration chromatography data, and NOE signals indicated that CaM-N and CaM-C can each bind one Orai1-CMBD. Thus our studies support an unusual, extended 1:2 binding mode of CaM to Orai1-CMBDs, and quantify the affinity of Orai1 for CaM. We propose a two-step mechanism for CaM-dependent Orai1 inactivation initiated by binding of the C-lobe of CaM to the CMBD of one Orai1 followed by the binding of the N-lobe of CaM to the CMBD of a neighboring Orai1.


Asunto(s)
Canales de Calcio/química , Canales de Calcio/metabolismo , Calcio/metabolismo , Calmodulina/química , Calmodulina/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Calorimetría , Cromatografía en Gel , Cristalografía por Rayos X , Interacciones Hidrofóbicas e Hidrofílicas , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Ratas , Soluciones
17.
J Biol Chem ; 287(43): 36022-8, 2012 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-22936799

RESUMEN

Bifunctional chondroitin synthase K4CP catalyzes glucuronic acid and N-acetylgalactosamine transfer activities and polymerizes a chondroitin chain. Here we have determined that an N-terminal region (residues 58-134) coordinates two transfer reactions and enables K4CP to catalyze polymerization. When residues 58-107 are deleted, K4CP loses polymerase activity while retaining both transfer activities. Peptide (113)DWPSDL(118) within this N-terminal region interacts with C-terminal peptide (677)YTWEKI(682). The deletion of either sequence abolishes glucuronic acid but not N-acetylgalactosamine transfer activity in K4CP. Both donor bindings and transfer activities are lost by mutating (677)YTWEKI(682) to (677)DAWEDI(682). On the other hand, acceptor substrates retain their binding to K4CP mutants. The characteristics of these K4CP mutants highlight different states of the enzyme reaction, providing an underlying structural basis for how these peptides play essential roles in coordinating the two glycosyltransferase activities for K4CP to elongate the chondroitin chain.


Asunto(s)
Condroitín/química , Escherichia coli/enzimología , Hexosiltransferasas/química , Péptidos/química , Secuencias de Aminoácidos , Catálisis , Condroitín/biosíntesis , Condroitín/genética , Escherichia coli/genética , Glicosilación , Hexosiltransferasas/genética , Hexosiltransferasas/metabolismo , Mutación , Péptidos/genética , Péptidos/metabolismo , Estructura Terciaria de Proteína , Relación Estructura-Actividad
18.
J Biol Chem ; 284(25): 16922-16930, 2009 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-19395377

RESUMEN

Pulmonary epithelial injury is central to the pathogenesis of many lung diseases, such as asthma, pulmonary fibrosis, and the acute respiratory distress syndrome. Regulated epithelial repair is crucial for lung homeostasis and prevents scar formation and inflammation that accompany dysregulated healing. The extracellular matrix (ECM) plays an important role in epithelial repair after injury. Vitronectin is a major ECM component that promotes epithelial repair. However, the factors that modify cell-vitronectin interactions after injury and help promote epithelial repair are not well studied. Inter-alpha-trypsin inhibitor (IaI) is an abundant serum protein. IaI heavy chains contain von Willebrand A domains that can bind the arginine-glycine-aspartate domain of vitronectin. We therefore hypothesized that IaI can bind vitronectin and promote vitronectin-induced epithelial repair after injury. We show that IaI binds vitronectin at the arginine-glycine-aspartate site, thereby promoting epithelial adhesion and migration in vitro. Furthermore, we show that IaI-deficient mice have a dysregulated response to epithelial injury in vivo, consisting of decreased proliferation and epithelial metaplasia. We conclude that IaI interacts not only with hyaluronan, as previously reported, but also other ECM components like vitronectin and is an important regulator of cellular repair after injury.


Asunto(s)
alfa-Globulinas/metabolismo , Bronquios/lesiones , Bronquios/metabolismo , Vitronectina/metabolismo , alfa-Globulinas/química , alfa-Globulinas/deficiencia , alfa-Globulinas/genética , Animales , Secuencia de Bases , Sitios de Unión , Bronquios/patología , Línea Celular , Células Epiteliales/metabolismo , Matriz Extracelular/metabolismo , Humanos , Técnicas In Vitro , Pulmón/metabolismo , Pulmón/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Oligopéptidos/química , Unión Proteica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Vitronectina/química , Cicatrización de Heridas/fisiología
19.
J Biol Chem ; 283(47): 32328-33, 2008 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-18806260

RESUMEN

Bacterial chondroitin polymerase K4CP is a multifunctional enzyme with two active sites. K4CP catalyzes alternative transfers of glucoronic acid (GlcA) and N-acetylgalactosamine (GalNAc) to elongate a chain consisting of the repeated disaccharide sequence GlcAbeta1-3GalNAcbeta1-4. Unlike the polymerization reactions of DNA and RNA and polypeptide synthesis, which depend upon templates, the monosaccharide polymerization by K4CP does not. To investigate the catalytic mechanism of this reaction, we have used isothermal titration calorimetry to determine the binding of the donor substrates UDP-GlcA and UDP-GalNAc to purified K4CP protein and its mutants. Only one donor molecule bound to one molecule of K4CP at a time. UDP-GlcA bound only to the C-terminal active site at a high affinity (K(d)=6.81 microm), thus initiating the polymerization reaction. UDP-GalNAc could bind to either the N-terminal or C-terminal active sites at a low affinity (K(d)=266-283 microm) but not to both sites at the same time. The binding affinity of UDP-GalNAc to a K4CP N-terminal fragment (residues 58-357) was profoundly decreased, yielding the average K(d) value of 23.77 microm, closer to the previously reported K(m) value for the UDP-GalNAc transfer reaction that takes place at the N-terminal active site. Thus, the first step of the reaction appears to be the binding of UDP-GlcA to the C-terminal active site, whereas the second step involves the C-terminal region of the K4CP molecule regulating the binding of UDP-GalNAc to only the N-terminal active site. Alternation of these two specific bindings advances the polymerization reaction by K4CP.


Asunto(s)
Escherichia coli/enzimología , Hexosiltransferasas/metabolismo , Calorimetría , Dominio Catalítico , ADN/química , Disacáridos/química , Escherichia coli/metabolismo , Hexosiltransferasas/fisiología , Hidrólisis , Cinética , Mutación , Péptidos/química , Unión Proteica , Conformación Proteica , Estructura Terciaria de Proteína , Especificidad por Sustrato , Termodinámica
20.
Methods Enzymol ; 416: 3-12, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-17113856

RESUMEN

Glycosyltransferases encompass one of the largest families of enzymes found in nature. Their principle function is to catalyze the transfer of activated donor-sugar molecules to various acceptor substrates. The molecular basis that governs this specific transfer reaction, such as how a given transferase determines donor-sugar specificity, remains to be elucidated. Human alpha1,4-N-acetylhexosaminyltransferase (EXTL2) transfers N-acetylglucosamine and N-acetylgalactosamine but does not transfer glucose or galactose. Isothermal titration calorimetry (ITC) is a powerful technique used to characterize various binding reactions, including both protein-ligand and protein-protein interactions. ITC provides the binding stoichiometry, affinity, and the thermodynamic parameters free energy (DeltaG), enthalpy (DeltaH), and entropy (DeltaS) of these binding interactions. This chapter describes our ITC study demonstrating the two-step mechanism that regulates the specific binding of N-acetylhexosamines to EXTL2.


Asunto(s)
Acetilglucosamina/química , Proteínas de la Membrana/química , N-Acetilglucosaminiltransferasas/química , Acetilglucosamina/metabolismo , Calorimetría/métodos , Humanos , Proteínas de la Membrana/aislamiento & purificación , Proteínas de la Membrana/metabolismo , N-Acetilglucosaminiltransferasas/aislamiento & purificación , N-Acetilglucosaminiltransferasas/metabolismo , Unión Proteica , Especificidad por Sustrato , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...